< Home

Chapter 12

Note: many links may not work

3D Coords & Vectors

[[chap12.pdf]]

Misc info

Cell: ### ### #### Common Final: [[2022-11-16]] @ 19:00 WebWork for homework

[[Math 243 Chapter 12 Notes.pdf]]

12.1

in 2d

in 3d

P1=(2,1,7)P2=(1,3,5)ddistance=P1P2=(x1x2)2+(y2y1)2+(z2z1)2 \begin{align} P_{1} &= (2, -1, 7) \\ P_{2} &= (1, -3, 5) \\ \underbrace{ d }_{ \text{distance} } &= |P_{1}P_{2}|= \sqrt{ (x_{1}-x_{2})^{2} + (y_{2}-y_{1})^{2} + (z_{2}-z_{1})^{2}} \end{align}

Sphere

Set of all pts eq from a given pt called centre, labeled by (h,k,l)(h, k, l)

r2=(xh)2+(yk)2+(zl) \begin{align} r^{2} = (x - h)^{2} + (y - k)^{2} + (z - l) \\ \end{align}

Give the centre and radius of the sphere x2+y2+z2+4x6y+2z+6=0x^{2} + y^{2} + z^{2} + 4x - 6y + 2z + 6 = 0 (Complete the square) Answer: r=8r = \sqrt{ 8 }

![[Pasted image 20220909083000.png]]

projection - set a variable to zero to put it on a single plane

traces - let z = different values

12.2

Vectors

Vector: Anythign that is fully described by magnitude and direction may be modelled by a vector

2 vecs are equivalent if they have the same mag. & dir.

Ways to describe vectors

  1. Geometric: Arrow from a pt (Initial Point) to another pt (Terminal Point) and/or an angle θ\theta from x axis
  2. Cartesian: F=F=<Fxx component,Fy,Fz> \vec{F} = \mathbf{F} = \left<\underbrace{ F_{x} }_{ \text{x component} }, F_{y}, F_{z}\right>

Fx=x2x1Fy=y2y1Fz=z2z1 \begin{align} F_{x} &= x_{2} - x_{1} \\ F_{y} &= y_{2} - y_{1} \\ F_{z} &= z_{2} - z_{1} \end{align}

Denote vector formed from (1,2)(1, 2) to (3,7)(3, 7)

Geometric: Arrow from (1,2)(1, 2) to (3,7)(3, 7)

Cartesian: a=<31,72>=<2,5>\vec{a} = \left<3 - 1, 7 - 2\right> = \left<2, 5\right>

  1. Polar F=<Fx,Fy>\vec{F} = \left<F_{x}, F_{y}\right> Fx=FcosθFy=Fsinθ \begin{align} F_{x} = |\vec{F}|\cos \theta \\ F_{y} = |\vec{F}|\sin \theta \end{align}

  2. Unit Axial Basis

i^=<1,0,0>j^=<0,1,0>k^=<0,0,1> \begin{align} \hat{i} &= \left<1, 0, 0\right> \\ \hat{j} &= \left<0, 1, 0\right> \\ \hat{k} &= \left<0, 0, 1\right> \end{align}

Operations on Vectors

Add/Sub

Add/Sub like components Result = resultant vector

Scaled Multiplication

ca=c<ax,ay,az>=<cax,cay,caz> \begin{align} c\vec{a} &= c\left<a_{x}, a_{y}, a_{z}\right> \\ &= \left<ca_{x}, ca_{y}, ca_{z}\right> \end{align}

A special vector: unit vector of a\vec{a}

mag of 11

u=aa \vec{u} = \frac{\vec{a}}{|\vec{a}|}

Unit Basis Form

a=3i^+2j^5k^=3<1,0,0>+2<0,1,0>5<0,0,1>=<3,2,5> \begin{align} \vec{a} &= 3\hat{i} + 2\hat{j} - 5\hat{k} \\ &= 3\left<1, 0, 0\right> + 2\left<0, 1, 0\right> - 5\left<0, 0, 1\right> \\ &= \left<3, 2, -5\right> \end{align}

12.3

Dot Product = Inner Product = Scalar Product

a=<ax,ay,az>b=<bx,by,bz>ab=axbx+ayby+azbz \begin{align} \vec{a} &= <a_{x}, a_{y}, a_{z}> \\ \vec{b} &= <b_{x}, b_{y}, b_{z}> \\ \vec{a} \cdot \vec{b} &= a_{x}b_{x}+a_{y}b_{y}+a_{z}b_{z} \end{align} Ex. <2,3><3,1>=2(3)+3(1)=6+3=3 \begin{align} \left<2, 3\right> \cdot \left<-3, 1\right> &= 2(-3) + 3(1) \\ &= -6 + 3 \\ &= 3 \end{align}

This results in a number

ϕ\phi is the angle between vectors

ab=abcosϕ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}|\cos \phi

#dotproduct-aro if ab=0\vec{a} \cdot \vec{b} = 0 then ab\vec{a} \perp \vec{b} if dot product >0>0 then angle is in Quadrant I = acute if dot product <0<0 then angle in Quadrant II = obtuse

ϕ=cos1[abab] \phi=\cos^{-1}\left[ \frac{\vec{a}\cdot \vec{b}}{|\vec{a}| |\vec{b}|} \right]

Application

Work

work = force * displacement

w=FD=FDcosϕ w = \vec{F} \cdot \vec{D} = |\vec{F}||\vec{D}|\cos \phi

Projections

Reference 12.3#1

Component projection of b\vec{b} onto a\vec{a}

bx=bcosϕab=abcosϕaba=bcosϕ=bx \begin{align} b_{x} &= |b|\cos \phi \\ a \cdot b &= |a| |b| \cos \phi \\ \frac{a \cdot b}{|a|} &= |b|\cos \phi=b_{x} \end{align}

compab=aba comp_{\vec{a}}\vec{b} = \frac{\vec{a}\cdot \vec{b}}{|\vec{a}|}

Vector projection of b\vec{b} onto a\vec{a} $$

\begin{align}

\frac{\vec{a}\cdot \vec{b}}{|\vec{a}|} \cdot \frac{\vec{a}}{|\vec{a}|} \

proj_{\vec{a}}\vec{b} = \frac{\vec{a}\cdot \vec{b}}{|\vec{a}|^{2}}\vec{a} \end{align} $$

12.4

Cross Product = Outer Product \to new vector \perp to both

a×b=cac and bc<c1,c2,c3>=<a2b3a3b2,a3b1a1b2a2b1> \begin{align} a \times b = c \\ a \perp c \text{ and } b \perp c \\ \left<c_{1},c_{2},c_{3}\right> = \left<a_{2}b_{3}-a_{3}b_{2},a_{3}b_{1}-a_{1}b_{2}-a_{2}b_{1}\right> \end{align}

%%![[Pasted image 20220912085241.png]]%%

a×b=absinϕ |a \times b| = |a| |b| \sin \phi

if a×b=0|a \times b| = 0 then aba \parallel b

Given 3 vectors (Reference 12.4#1)

a(b×c)=volume |\vec{a}\cdot(\vec{b}\times\vec{c})| = \text{volume}

![[Pasted image 20220914081430.png]] (08:14) Plane = two vectors between the points

![[Pasted image 20220914081951.png]] (8:19) Use the scalar triple product to show that the vectors ... are coplanar Volume of parallelipiped = 0? a(b×c)=0 |\vec{a}\cdot(\vec{b}\times \vec{c})|=0

Torque

τ=r×Fτ=r×F=rFsinϕ \begin{align} \tau &= \vec{r}\times \vec{F} \\ |\tau| &= |\vec{r}\times \vec{F}| = |\vec{r}| |\vec{F}| \sin \phi \end{align}

12.5

2 Special Vector Functions

Line

in 2d: y=mx+by=mx+b

mm \to direction bb \to initial value, y0y_{0}

in vectors: L=vt+r0\vec{L} = \vec{v}t+\vec{r_{0}}

$$ \begin{align}

\vec{v} &\to \text{direction} \ \vec{r_{0}} &\to \text{terminal point on the line of a given victor}\ t &\to \text{time/independent variable} \end{align} $$

![[Pasted image 20220914090554.png]] (9:03 ish)

![[Pasted image 20220914090325.png]] (9:05)

Eq of a line segment between 2 pts r0\vec{r_{0}} and r1\vec{r_{1}}

M=(1t)r0+tr10t1 \begin{align} \vec{M} = (1-t)\vec{r_{0}}+t\vec{r_{1}} \\ 0\leq t\leq 1 \end{align}

Example of lines

![[Pasted image 20220916081046.png]]

Parallel

Check that the coefficient of each component is a scaled value

not \parallel as v1cv2\vec{v_{1}}\neq c\vec{v_{2}}

Skew/Intersect

$$ \begin{align} 1 + 2t &= -11 + 3s \ 17 + 7t &= -22 + 9s \ \

-3 ( 2t - 3s &= -12 ) \ 7t - 9s &= -39 \ \

t &= -3 \ s &= 2 \ \end{align} $$

Plug in the values for the zz, if they're the same, then they intersect, else skew

Equation of a plane

Given some pt r0=<x0,y0,z0>\vec{r_{0}}= \left<x_{0},y_{0},z_{0}\right> of some plane r=<x,y,z>\vec{r}= <x, y, z>, the vector equationof the plane n(rr0)=0<a,b,c>A normal to a plane<xx0,yy0,zz0>Every vector in plane whose initial pt is r0=0a(xx0)+b(yy0)+c(zz0)=0 \begin{align} \vec{n} \cdot (\vec{r}-\vec{r_{0}}) &= 0 \\ \underbrace{ <a,b,c> }_{ \text{A normal to a plane} } \cdot \underbrace{ <x-x_{0},y-y_{0},z-z_{0}> }_{ \text{Every vector in plane whose initial pt is } \vec{r_{0}} } &= 0 \\ a(x-x_{0}) + b(y-y_{0}) + c(z-z_{0}) &= 0 \end{align}

![[Pasted image 20220916082652.png]]

![[Pasted image 20220916083308.png]]

![[Pasted image 20220916083656.png]]

12.6

Cylinders

Cylinder: Surface that consists of all lines \parallel to a given line that passes through a given plane ~ Any function in 3d only displaying 2 variables

12.6#1 y=x2 \begin{align} y = x^2 \end{align}

Quadric Surface

$$ \begin{align} Ax^{2}+by^{2}+Cz^{2}+Dxy+Eyz+Fxz+Gx+Hg+Iz+J=0 \

\end{align} $$

Need to know: ![[Pasted image 20220914084706.png]]