< Home

Calculus BC AP

Limts

Notation for: Limit from the left of f(x)f(x) as xax \to a limxaf(x) \lim _{x \to a^-} {f(x)}

Limit from the right of f(x)f(x) as xax \to a limxa+f(x) \lim _{x \to a^+} {f(x)}

limxaf(x)=F\lim _{x\to a} {f(x)} = F and limxag(x)=G\lim _{x \to a} {g(x)} = G

limxag(f(x))=g(limxaf(x))=g(F) \lim _{x \to a} {g(f(x))} = g(\lim _{x \to a} f(x)) = g(F)

limxaf(x)g(x)=limxaf(x)limxag(x) \lim _{x \to a} \frac {f(x)} {g(x)} = \frac {\lim _{x \to a} f(x)} {\lim _{x \to a} g(x)}

Special Cases Break anywhere, split into right & left hand?

Def. Of Cont.

limxaf(x)lim _{x\to a} f(x) exists, f(a)f(a), limxaf(x)=f(a)lim _{x\to a} f(x) = f(a)

Conditions in which a limit DNE

  1. Sharp Turn
  2. Cusp
  3. Vertical Tangent
  4. Discont.

Derivatives

Average Rate Of Change (= Slope) f(B)f(A)BA \frac{f(B) - f(A)}{B-A}

Limit Def. of Derivative ddx(f(x))=limh0f(x+h)f(x)h \frac{d}{dx} (f(x)) = \lim _{h \to 0} \frac {f(x + h) - f(x)} h

Alternative Limit Def. of Deriv. ddx(f(x))=limxaf(x)f(a)xa {d \over dx} (f(x)) = \lim _{x \to a} \frac {f(x) - f(a)} {x - a}

Chain Rule ddx[f(g(x))]=f(g(x))g(x)=(fg)(x)g(x) {d \over dx} [f(g(x))] = f'(g(x)) * g'(x) = (f' \circ g) (x) * g'(x)

Product Rule ddx(f(x)g(x))=f(x)g(x)+f(x)g(x) {d \over dx} (f(x)*g(x)) = f(x)g'(x) + f'(x)g(x)

Quotient Rule ddx[h(x)k(x)]=k(x)h(x)h(x)k(x)(k(x))2=Lo dHiHi dLoLo2 {d \over dx} \left[{h(x) \over k(x)}\right] = {k(x)h'(x)-h(x)k'(x) \over (k(x))^2} = {\text {Lo dHi} - \text {Hi dLo} \over \text {Lo}^2}

Derivatives of Inverse Functions

f(x)1f(y) f(x) \Rightarrow \frac 1 {f'(y)}

Linear Motion

Position: s(t)s(t) Velocity: v(t)=s(t)v(t) = s'(t) Acceleration: a(t)=v(t)=s(t)a(t) = v'(t) = s''(t)

Derivatives++

dxdy(xn)=nxn1\frac{dx}{dy} \left(x^n\right) = nx^{n-1} dxdy(sinx)=cos(x)\frac{dx}{dy} \left(\sin x\right) = \cos (x) dxdy(cosx)=sin(x)\frac{dx}{dy} \left(\cos x\right) = -\sin (x) dxdy(tanx)=sec2(x)\frac{dx}{dy} \left(\tan x\right) = \sec ^2 (x) dxdy(cotx)=csc2(x)\frac{dx}{dy} \left(\cot x\right) = -\csc ^2 (x) dxdy(secx)=sec(x)tan(x)\frac{dx}{dy} \left(\sec x\right) = \sec (x)\tan (x) dxdy(cscx)=csc(x)cot(x)\frac{dx}{dy} \left(\csc x\right) = -\csc (x)\cot (x) dxdy(lnx)=1x\frac{dx}{dy} \left(\ln x\right) = \frac{1}{x} dxdy(ex)=ex\frac{dx}{dy} \left(e^{x}\right) = e^x dxdy(sin1x)=11x2\frac{dx}{dy} \left(\sin ^{-1} x\right) = {1 \over \sqrt {1 - x ^2}} dxdy(sin1x)=11+x2\frac{dx}{dy} \left(\sin ^ {-1} x\right) = {1 \over 1 + x^2} dxdy(sec1x)=1xx21\frac{dx}{dy} \left(\sec ^{-1} x\right) = {1 \over |x| \sqrt {x^{2}- 1}} dxdy(cos1x)=11x2\frac{dx}{dy} \left(\cos ^{-1} x\right) = {-1 \over \sqrt {1 - x^2}} dxdy(ax)=ln(a)ax\frac{dx}{dy} \left(a^x\right) = \ln(a)a^x dxdy(logax)=1ln(a)x\frac{dx}{dy} \left(\log _a x\right) = {1 \over \ln(a) x}

Intermediate Value Theorem

If cont. on [A,B][A, B] then every value between AA and BB exist.

Mean Value Theorem

If cont. on [A,B][A, B] and differentiable on (A,B)(A, B) then f(c)=f(B)f(A)BAf'(c) = {f(B) - f(A) \over B - A} for some value of cc

First Fundamental Theorem of Calculus

ABf(x)dx=f(B)f(A) \int _A ^B f'(x) dx = f(B) - f(A)

Second Fundamental Theorem of Calculus

ddx[Ag(x)f(t)dt]=f(g(x))g(x) \frac {d} {dx} \left[\int _A ^{g(x)} f(t) dt\right] = f(g(x))g'(x)

Average Value

favg=1BAABf(x)dx f_{avg} = {1 \over B - A} \int _A ^B f(x) dx

Solids of Revolution & Co.

Cross Sections

A(x)dx \int A(x)dx A(x)=A(x) = Area of shape

Disk Method

π(r(x))2dx \pi \int (r(x))^2dx r(x)=r(x) = radius

Washer Method

π(R(x))2(r(x))2dx \pi \int \left(R(x)\right)^2 - (r(x))^2 dx

R(x)=R(x) = Outer radius r(x)=r(x) = Inner radius

Arc Length (Rectangular)

==COMPLETE ME==

L'Hopital's Rule

If

limxaf(x)g(x)00 or  \lim _{x \to a} {f(x) \over g(x)} \Rightarrow {0 \over 0} \text{ or } {\infty \over \infty}

then

limxaf(x)g(x)=LHoplimxaf(x)g(x) \lim _{x \to a} {f(x) \over g(x)} = L'Hop \lim _{x \to a} {f'(x) \over g'(x)}

Advanced Integration Techniques

  1. U-Sub
  2. Logn Division
  3. Complete the Square
  4. Partial Fractions
  5. [[#Integration by Parts]]

Integration by Parts

udv=uvvdu \int u \, dv = uv - \int v \, du

Logistic Growth

dPdt=KP(LP)P=L1+Qeklt \begin{align*} { dP \over dt } = KP(L-P)\\ P = { L \over 1 + Q e^{-klt}} \end{align*}

Parametric Equations

dydx=dy/dtdx/dtd2ydx2=ddt[dydx]dx/dt \begin{align*} { dy \over dx } = { dy / dt \over dx / dt }\\ { d^2y \over dx^2 } = { \frac {d} {dt} \left[{ dy \over dx }\right] \over dx/dt } \end{align*}

Taylor Series

n=0f(n)(c)n!(xc)n \sum\limits _{n=0} ^{\infty} { f^{(n)}(c) \over n! }(x-c)^n

Maclaurin Series

$$ \begin{align} e^{ x } &= \sum _{n=0} ^\infty \frac{x^n}{n!} &= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \

\cos x &= \sum _{n=0} ^\infty \frac{(-1)^{n}x^{2n}}{(2n)!} &= 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\dots \

\sin x &= \sum _{n=0} ^\infty \frac{(-1)^nx^{2n+1}}{(2n+1)!} &= x - \frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\dots \

\frac{1}{1-x} &= \sum {n=0} ^\infty x^n &= \underbrace{ 1 + x + x^{2} + x^{3} + \dots }{ \text{Expanded Form} }

\end{align}

$$